

Mark Scheme (Results)

Summer 2015

Pearson Edexcel International A Level in Further Pure Mathematics (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015 Publications Code IA041573 All the material in this publication is copyright © Pearson Education Ltd 2015

https://xtremepape.rs/

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCELIAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking (But note that specific mark schemes may sometimes override these general principles). Method mark for solving 3 term guadratic:

1. Factorisation

 $(x^{2}+bx+c) = (x+p)(x+q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

<u>Exact answers</u>

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

June 2015 Further Pure Mathematics F1 WFM01 Mark Scheme

Question Number	Scheme			s
1. (a)	$2z^3 - 5z^2 + 7z - 6$	$2z^{3}-5z^{2}+7z-6=(2z-3)(z^{2}+az+b)$		
	B1: One of $a = -1$ or $b = 2$			
	a = -1 and $b = 2$	B1: Both $a = -1$ and $b = 2$	B1 B1	
	Values may be implied by a con	rrect quadratic e.g. sight of $z^2 - z + 2$		
				(2)
(b)	$z = 1\frac{1}{2}$	z = 1.5 or equivalent	B1	
	$z = \frac{1}{2} \pm \left(\frac{1}{2}\sqrt{7}\right)\mathbf{i}$	M1: Solves their 3 term quadratic (usual rules) as far as $z =$ A1: Allow $z = \frac{1 \pm i\sqrt{7}}{2}$ or equivalent e.g. $z = \frac{1}{2} \pm \left(\sqrt{\frac{7}{4}}\right)i$	M1A1	
	Answers must be exact and accep Answers that are not exac	ot correct answers only for both marks. ct with no working score M0A0		
				(3)
			[5 mar	ks]

Question Number	Scheme		
2.	$(3r-2)^2 = 9r^2 - 12r + 4$	Correct expansion	B1
	$\sum_{r=1}^{n} (3r-2)^2 = \sum_{r=1}^{n} 9r^2 - \sum_{r=1}^{n} 12r + \sum_{r=1}^{n} 4$ $= 9\frac{n}{6}(n+1)(2n+1) - 12\frac{n}{2}(n+1) + 4n$	B1ft: "4" = "4" <i>n</i> M1: Uses valid formulae for sum of squares and sum of integers (their 9 or 12 may be followed through from their coefficients)	B1ft M1
	$= \frac{n}{2} (3(n+1)(2n+1) - 12(n+1) + 8)$ or $\frac{n}{6} (9(n+1)(2n+1) - 36(n+1) + 24)$	Takes out factor $\frac{n}{2}$ or $\frac{n}{6}$. Dependent on the B1ft having been scored.	dM1
	$=\frac{n}{2}\left(6n^2-3n-1\right)$	Correct result or states $a = 6$, $b = -3$, c = -1	A1
			(5)
	You should always award marks as in the scheme but generally there are no		
	marks for proof by induction		[5 marks]

Question Number	Scheme	9	Marks
3. (a)	$\alpha + \beta = \frac{7}{2}$ and $\alpha\beta = 2$	Allow $\frac{4}{2}$ for 2	B1
	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	M1: Uses $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	
	$=\left(\frac{7}{2}\right)^2 - 2(2) = \frac{33}{4}$	A1: $\frac{33}{4}$ or $8\frac{1}{4}$ or 8.25	M1 A1
			(3)
(b)	Sum of roots is $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{\frac{33}{4}}{2} = \frac{33}{8}$	M1: Attempts sum or product of new roots correctly (may be implied)	M1 A1
	and product of roots is $\frac{\alpha}{\beta} \times \frac{\beta}{\alpha} = 1$	A1: Sum = $\frac{33}{8}$ and product = 1	
	$x^{2} - \frac{33}{8}x + 1 = 0 \therefore 8x^{2} - 33x + 8 = 0$	$8x^2 - 33x + 8 = 0$ or any integer multiple including the "= 0"	A1
			(3)
			[0 marks]
	Alternative – finds	s roots explicitly:	
(a)	$\alpha, \beta = \frac{1}{4} \left(7 \pm \sqrt{17} \right)$	Correct exact roots including $\sqrt{17}$	B1
	(49) 17 66 33	M1: Squares and adds their roots	
	$\alpha^{2} + \beta^{2} = 2\left(\frac{1}{16}\right) + 2\frac{1}{16} = 2 \times \frac{1}{16} = \frac{1}{4}$	A1: cao $\frac{33}{4}$ or $8\frac{1}{4}$ or 8.25	M1 A1
	L		(3)
(b)	$\left(x - \frac{7 + \sqrt{17}}{7 - \sqrt{17}}\right) \left(x - \frac{7 - \sqrt{17}}{7 + \sqrt{17}}\right) = \dots$	Uses $\left(x - \frac{\alpha}{\beta}\right) \left(x - \frac{\beta}{\alpha}\right)$ with numerical $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ and attempts to expand. There are no marks until numerical values are used.	M1
	$=x^2 - \frac{33}{8}x + 1$		A1
	$8x^2 - 33x + 8 = 0$	This answer with no errors or any integer multiple including the "= 0"	Alcso
	Not	ta.	(3)
	Roots of the form $\frac{1}{k} \left(7 \pm \sqrt{17}\right), k \neq 4$ will	give a correct answer – in this case lose	
	the final mar	k as not cso.	

Question Number	Scheme		
4. (a)	(<i>PQ</i> =) 13	Sight of 13 (Must be seen in (a))	B1
			(1)
(b)	$9 + a = 13 \Longrightarrow a = \dots$	M1: Uses $9 \pm a = 13$ or $(9 \pm a)^2 + 36a = 169$	
	or	to obtain a value for <i>a</i>	M1 A1
	$(9\pm a)^2 + 36a = 169 \Longrightarrow a = \dots$	A1: $a = 4$ only	
			(2)
(c)	<i>y</i> = 12	Correct <i>y</i> coordinate of <i>P</i> .	M1
	Uses Area of triangle = $\frac{1}{2} \times 13 \times "y"$ or		
	$\frac{1}{2} \times \begin{vmatrix} -4 & 9 & 4 & -4 \\ y & y & 0 & y \end{vmatrix}$	A correct triangle area method	M1
	= 78	cao	A1
		·	(3)
	Alternative method for area of t	riangle using midpoint of QS (M)	
	$\mathbf{Area} = \frac{1}{2} \times QS \times MP = \frac{1}{2} \times \sqrt{208} \times \sqrt{117}$		
	The method for QS and MP n There are other methods for the area an	nust be correct for their values ad the method should be correct for their	
	values to score the M1 e.g. $Box - Triangles = 156 - 48 - 30 = 78$		
			[o marks]

Question Number		Sch	eme			Marks
5.(a)	f(2) = and f(3) = A (i) N N		Attempts to e (ignore use o NB degrees NB $f(2) \approx 2$	Attempts to evaluate both $f(2)$ and $f(3)$ (ignore use of degrees for this mark) NB degrees usually scores M1A0M0A0 NB $f(2) \approx 2$ and $f(3) \approx -3$ for degrees		M1
	f(2) = 2.3,	f(3) = -1.4	Needs accura rounded	Needs accuracy to 1 figure truncated or counded		A1
	f(2.5) = 0.5and	f(2.75)= -0.4	Evaluates bor f(2.25))	th f(2.5) and f(2.75) (and not	M1
	(2.5, 2.75)	$2.5 \le x \le 2.75$ or 2 $2.5 \le \alpha \le 2.75$ or [2 words. Allow a mix such as $2.75 \le x \le 2$ or rounded for f(2.4)	5 < x < 2.75 o .5, 2.75 or (2.5) acture of 'ends' 2.5. Needs acc 5) and f(2.75) a	r $2.5 \le \alpha \le 2.7$ 5, 2.75) or equi but not incorre uracy to 1 figu and conclusion	5 or valent in ect statements ire truncated	A1
		· · ·				(4)
	Note that some candi M's can still scor correctly evalua	idates only indicate re as defined but no ted in (b) then the f	the sign of f n t the A's. How ïrst A1 can be	ot its value. In vever if f(2) an e given retrosp	n this case the ad f(3) are pectively.	
	C	ommon Approach	in the form of	a table:	· · · · ·	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} b \\ \hline 76 \\ \hline 51 \\ \hline \end{array}$	f(<i>b</i>) -1.428	$\frac{\frac{a+b}{2}}{2.5}$	$\frac{f\left(\frac{a+b}{2}\right)}{0.5151}$	
	2.5 0.51	2.5 < 0	<i>z</i> < 2.75	2.15	-0.4472	
	Would score full marks in (a)					
(b)	$\frac{\alpha - 2}{2.3158} = \frac{3 - \alpha}{1.4280} \ c$	or $\frac{\alpha - 2}{2.3158} = \frac{3 - 2}{3.7438}$	Correct ec their valu negative le	uation involvi es even in deg engths scores N	ng α or x and rees. Use of M0	M1
	$\alpha(1.4280 + 2.3158) =$ so α	$3 \times 2.3158 + 2 \times 1.428$ $\alpha =$	0 Makes α o on the pre algebra.	or x the subject vious M but co	. Dependent ondone poor	dM1
	(α =)2.62	cao and cs	so (Allow $x = $)		A1
	A co	orrect statement fol	lowed by 2.62	scores 3/3		
		Using v	= mx + c:			(3)
	m = f(2) - f(c) $c = f(2) - 2$	3) = -3.74 2m = 9.80	Correct m straight lin	Correct method to find equation of straight line		M1
	<i>y</i> = 0 =	$\Rightarrow x = \dots$	Substitute subject. D	s $y = 0$ and ma ependent on the theorem of the second se	kes x or α the ne previous M	dM1
	(α =)2.62	cao and cs	so (Allow $x = $)		A1
	Also allow candidates to find the value of e.g $3-\alpha$ or $\alpha - 2$ and then add to 2 or subtract from 3: M1 for a correct method for $3-\alpha$ or $\alpha - 2$, dM1 for adding to 2					
	or su	otracting from 3 an	a A1 for 2.62	cao and cso.		
						[7 marks]

Question Number	Scheme			
6(a)	Gradient of PQ is $\frac{\frac{6}{p} - \frac{6}{q}}{6p - 6q} \left(= -\frac{1}{pq} \right)$	Correct gradient in any form	B1	
	Equation of PQ is $y - \frac{6}{q} = \frac{\frac{6}{p} - \frac{6}{q}}{6p - 6q} (x - 6q)$	M1: Uses straight line equation in any form correctly for their gradient or uses $y = mx + c$ and attempts to find <i>c</i> in terms of <i>p</i> and <i>q</i> A1: Correct line in any form	M1 A1	
	$y - \frac{6}{q} = \frac{-1}{pq} (x - 6q)$ $pq(y - \frac{6}{q}) = -(x - 6q) \Rightarrow pqy + x = 6(p + q)^*$ Cso. Reaches the given answer with at least one intermediate step.			
			(4)	
	Alternative simultar	neous equations		
	$\frac{6}{p} = m(6p) + c, \frac{6}{q} = m(6q) + c$	Correct equations	B1	
	$m = \frac{q-p}{1-p}$, $c = \frac{6}{1-p} + \frac{6}{1-p}$	M1: Solves simultaneously to obtain either "m" or "c" in terms of p and q	M1A1	
	pq(p-q) $p q$	A1: $m = \frac{q-p}{pq(p-q)}$ and $c = \frac{6}{p} + \frac{6}{q}$	111711	
	$pqy + x = 6(p+q)^*$	Cso. Reaches the given answer with at least one intermediate step.	A1*	
(b)	$y = \frac{36}{x} \Rightarrow \frac{dy}{dx} = -36x^{-2} \text{ and uses } x = 6r$ $x\frac{dy}{dx} + y = 0 \Rightarrow \frac{dy}{dx} = -\frac{y}{x} \text{ and use } x = 6r, y = 0$ $\frac{dx}{dr} = 6 \Rightarrow \frac{dy}{dr} = -\frac{6}{r^2} \text{ and uses } \frac{dy}{dx} = \frac{dy}{dr} \div \frac{dx}{dr}$	$\frac{\frac{dy}{dx} = kx^{-2} \text{ and uses } x = 6r}{\frac{dy}{dx} = k\frac{y}{x} \text{ and uses } x = 6r, y = 6/r}$ $\frac{\frac{dy}{dx} = k \Rightarrow \frac{dy}{dr} = \frac{k}{r^2} \text{ and uses}}{\frac{dy}{dx} = \frac{dy}{dr} \div \frac{dx}{dr}}$	- M1	
	So at <i>R</i> gradient of curve = $-\frac{1}{r^2}$ Allow e.g	w any un-simplified correct form $36(6r)^{-2}, -\frac{\frac{6}{r}}{6r}, -\frac{6}{r^2} \div 6$	A1	
	So gradient of normal = r^2	Correct use of perpendicular gradient rule	M1	
	$-\frac{1}{pr} \times -\frac{1}{qr} = -1$ M1: Uses grad	adient <i>PR</i> perpendicular to gradient <i>QR</i> equation connecting $p_{i} q$ and r	M1 A1	
	So $r^2 = \frac{-1}{pq}$ which is the gradient of PQ so the normal at R is parallel to PQ	e Conclusion with all previous marks scored. Must see the word 'parallel' used.	A1cso	
			[10 marks]	

Question Number	Scheme			Marks	
7.(a)	$ z = k\sqrt{13}$		Accept $\sqrt{13k^2}$ but not $\sqrt{9k^2 + 4k^2}$	B1	
		M1: Uses			
	$\arg z = \pi + \arctan\left(\frac{2}{\pi}\right) = \pi + 0.588$	$\pi + 0.588 = \arctan\left(\pm\frac{2}{3}\right) \left(\pm 0.588^{\circ} \dots / \pm 33.6^{\circ} \dots\right)$ or $\arctan\left(\pm\frac{3}{2}\right) \left(\pm 0.98^{\circ} \dots / \pm 56.3^{\circ} \dots\right)$			
	= 3.73 or -2.55				
		A1: 3.73 o			
				(3)	
(b)(i)		M1: Substitute denominator b equivalent	es z and multiplies numerator and by conjugate of denominator or		
	$\frac{4}{z+3k} = \frac{4}{-2ki} = \frac{2}{k}i$	A1: $\frac{2}{k}$ i oe (Allo	bw un-simplified e.g. $\frac{8k}{4k^2}$ i). Allow	M1 A1	
		$0 + \frac{2}{k}i$			
(ii)	$z^{2} = (-3k - 2ki)(-3k - 2ki) = 9k^{2} +$	$12ik^2 + 4i^2k^2$	Multiplies out obtaining 3 term quadratic in i	M1	
	$=5k^2+12k^2\mathbf{i}$		M1: Uses $i^2 = -1$ (may be implied) A1: cao	M1A1	
				(5)	
(c)			Plots z in 3 rd quadrant and z^* as mirror image in 2 nd quadrant and both correctly labelled	B1	
		\checkmark D or z^2	Plots a complex number on positive imaginary axis and correctly labelled	B1	
	$\begin{array}{c} I \\ B \text{ or } z^* \end{array} \begin{array}{c} C \\ R \end{array}$		Plots and labels D in the first quadrant, positioned correctly relative to the other points and further from the origin than all the other points.	B1	
			<u>Notes:</u> 1. Penalise the omission of labels once and penalise it the first time it occurs.	(3)	
	A or z		2. For labels allow letters, in terms of z, coordinates or labels on axes.		
			3. If there are separate Argand Diagrams, imagine them superimposed.		
			4. Accept points, lines or arrows.		
				(3)	
				[11 marks]	

Question Number	Scher	ne	Marks
8.(a)	$\mathbf{P}^{-1} = \frac{1}{25a^2} \begin{pmatrix} 3a & 4a \\ -4a & 3a \end{pmatrix} \text{ or} \\ \frac{1}{25a} \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix}$	M1: Switches signs on minor diagonal B1: Correct determinant. Allow simplified or un-simplified e.g. $3a(3a)$ -(- $4a$)($4a$), score when first seen. A1: Completely correct inverse with determinant simplified.	M1 B1 A1
(b)	$\frac{1}{25a} \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix} \begin{pmatrix} -3a & 6a & -20a \\ -4a & 8a & 15a \end{pmatrix}$	Sets up correct multiplication including $\frac{1}{25a}$ or equivalent	(3) M1
	$= \begin{pmatrix} -1 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix}$	Correct matrix	A1
	(-1,0), (2,0) and (0,5)	Follow through their matrix but must be written as coordinates	A1ft
	(1-)		(3)
(C)	Area of triangle $T_1 = \frac{1}{2} \times 3 \times 5$ o.e. $\left(\frac{15}{2}\right)$	Correct area for triangle T_1 .	M1
	Area scale factor is $25a^2$ so Area of triangle $T_2 = \frac{15}{2} \times 25a^2 = 187.5a^2$ of	M1: Multiplies their area of T_1 by their det P to find required area A1: cao	M1A1
			(3)
	Alternative 1: Sh	oelace method	
	area $T_2 = \frac{1}{2} \times \begin{vmatrix} -3a & 6a & -20a & -3a \\ -4a & 8a & 15a & -4a \end{vmatrix}$	Correct statement.	M1
	$\frac{1}{2} \times \begin{vmatrix} -3a \times 8a + (6a \times 15a) + (-20a \times -4a) \\ -\{(-4a \times 6a) + (-8a \times 20a) + (15a \times -3a)\} \end{vmatrix}$	Correct calculation	M1
	$=187.5a^{2}$ oe	cao	A1
	Alternative 2: Encloses T ₂ by a rec	tangle and subtracts triangles:	
	Rectangle area = $494a^2$ and one triangle area of $161.5a^2$, $91a^2$ or $54a^2$	Correct values	M1
	$494a^2 - 161.5a^2 - 91a^2 - 54a^2$	Complete method for area	M1
	$=187.5a^{2}$ oe	cao	A1
(d)	$\mathbf{Q} = \begin{pmatrix} \frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{pmatrix} \qquad $	$\begin{bmatrix} \alpha \\ \frac{3}{5} \end{bmatrix} \frac{3}{5} \text{ in both entries of main diagonal and} \\ \neq 0 \\ \text{matrix} \\ \end{bmatrix}$	M1A1
			(2)
(e)	$\mathbf{R} = \begin{pmatrix} \frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{pmatrix} \begin{pmatrix} 3a & -4a \\ 4a & 3a \end{pmatrix} = \begin{pmatrix} 5a & 0 \\ 0 & 5a \end{pmatrix} \text{of}$	M1: Sets up correct multiplication in correct order. "Their \mathbf{Q} " \times \mathbf{P} A1: cao	M1 A1
			(2)

Question Number	Scheme			Marks
9.(i)	If $n = 1$, $\sum_{r=1}^{n} r^2 (2r-1) = 1$ and $\frac{1}{6} n(n+1)(3n^2 + n - 1) = 1$, LHS=RHS so true for $n = 1$.			B1
	$\sum_{r=1}^{k+1} r^2 (2r-1) = \frac{1}{6} k(k+1)(3k^2 + k)$	(k-1) + (k+1) + (k+1	$(-1)^2(2(k+1)-1)$	M1
	(Adds the $(k + 1)^{\text{ar}}$ term to the sum of the first k terms) dM1: Attempt factor of $\frac{1}{k}(k + 1)$			
	$=\frac{1}{6}(k+1)(3k^3+13k^2+17k+6)$	A1: $\frac{1}{6}(k - k)$	$\frac{(k+1)}{(3k^3+13k^2+17k+6)}$	dM1A1
	$= \frac{1}{6}(k+1)(k+2)(3k^2+7k+3) = \frac{1}{6}(k+1)(k+2)(k+2)(k+1)(k+2)(k+1)(k+2)(k+1)(k+2)(k+1)(k+2)(k+1)(k+2)(k+1)(k+2)(k+1)(k+2)(k+1)(k+2)(k+1)(k+2)(k+1)(k+2)(k+1)(k+2)(k+1)(k+2)(k+1)(k+2)(k+1)(k+2)(k+1)(k+2)(k+1)(k+2)(k+1)(k+2)(k+1)(k+1)(k+2)(k+1)(k+1)(k+1)(k+1)(k+1)(k+1)(k+1)(k+1$	(k+1)(k+2)(k+2)(k+2)(k+2)(k+2)(k+2)(k+2)(k+2	$(3(k+1)^2 + (k+1) - 1)$	A1
	Achieves this result with no er	rors and 3	$k^2 + 7k + 3$ seen	
	Allow work that shows e	equivalenc	e between	
	e.g. $\frac{1}{6}(k+1)(3k^3+13k^2+17k+6)$ and $\frac{1}{6}$	(k+1)(k+1)(k+1)(k+1)(k+1)(k+1)(k+1)(k+1)	$2)(3(k+1)^2 + (k+1) - 1)$	
	True for $n = k + 1$ if true for $n = k$, and as tr	ue for $n = 1$	1 true by induction for all <i>n</i> .	Alcso
	Full conclusion and all pr	evious ma	rks scored	
				(6)
(ii)	$n = 1: \begin{pmatrix} 7 & -12 \\ 3 & -5 \end{pmatrix}^{1} = \begin{pmatrix} 6+1 & -12 \\ 3 & 1-6 \end{pmatrix}$ so true	e for $n = 1$	Shows true for $n = 1$	B1
	$ \begin{pmatrix} 7 & -12 \\ 3 & -5 \end{pmatrix}^{k+1} = \begin{pmatrix} 6k+1 & -12k \\ 3k & 1-6k \end{pmatrix} \begin{pmatrix} 7 & -12 \\ 3 & -5 \end{pmatrix} \text{ or } \begin{pmatrix} 7 & -12 \\ 3 & -5 \end{pmatrix} \begin{pmatrix} 6k+1 & -12k \\ 3k & 1-6k \end{pmatrix} $			M1
	Either statement	t scores M	1	
	$\begin{pmatrix} 6k+7 & -12k-12\\ 3k+3 & -6k-5 \end{pmatrix}$		M1: Correct attempt at multiplication (if unclear, at least 2 terms must be correct)	
	$\begin{pmatrix} 7(6k+1)+3(-12k) & -12(6k+1)+(-12k) \\ 3k(7)+3(1-6k) & -12(3k)+(1-6k) \end{pmatrix}$	(k)(-5)	A1: Correct matrix possibly un-simplified	M1A1
	If the previous A1 was awarded for $\begin{pmatrix} 6k+7\\ 3k+3 \end{pmatrix}$	-12k -6k	$\begin{pmatrix} -12 \\ -5 \end{pmatrix}$ then allow the next A	
	mark for the matrix as shown. If the previous $ \begin{pmatrix} 7(6k+1)+3(-12k) & -12(6k+1)+(-12k) \\ 3k(7)+3(1-6k) & -12(3k)+(1-6k) \end{pmatrix} $	A1 was av $\binom{k}{-5}$ the formula of the formula o	varded for e.g.	
	$\begin{pmatrix} 6k+7 & -12k-12\\ 3k+3 & -6k-5 \end{pmatrix}$ before the next A m	hark can be	e awarded.	
	$\begin{pmatrix} 6(k+1)+1 & -12(k+1) \\ 3(k+1) & 1-6(k+1) \end{pmatrix}$		States or shows by equivalence that the result is true for $n = k + 1$	A1
	True for $n = k + 1$ if true for $n = k$, and as tr	ue for $n = 1$	1 true by induction for all n .	A1
	Full conclusion and all pr	evious ma	rks scored	(6)
	i un conclusion une un previous marks secred			[12 marks]

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom